Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels
نویسندگان
چکیده
BACKGROUND High levels of ammonia and the presence of sulphide have major impacts on microbial communities and are known to cause operating problems in anaerobic degradation of protein-rich material. Operating strategies that can improve process performance in such conditions have been reported. The microbiological impacts of these are not fully understood, but their determination could help identify important factors for balanced, efficient operation. This study investigated the correlations between microbial community structure, operating parameters and digester performance in high-ammonia conditions. METHOD Continuous anaerobic co-digestion of household waste and albumin was carried out in laboratory-scale digesters at high ammonia concentrations (0.5-0.9 g NH3/L). The digesters operated for 320 days at 37 or 42 °C, with or without addition of a trace element mixture including iron (TE). Abundance and composition of syntrophic acetate-oxidising bacteria (SAOB) and of methanogenic and acetogenic communities were investigated throughout the study using 16S rRNA and functional gene-based molecular methods. RESULTS Syntrophic acetate oxidation dominated methane formation in all digesters, where a substantial enhancement in digester performance and influence on microbial community by addition of TE was shown dependent on temperature. At 37 °C, TE addition supported dominance and strain richness of Methanoculleus bourgensis and altered the acetogenic community, whereas the same supplementation at 42 °C had a low impact on microbial community structure. Both with and without TE addition operation at 42 °C instead of 37 °C had low impact on digester performance, but considerably restricted acetogenic and methanogenic community structure, evenness and richness. The abundance of known SAOB was higher in digesters without TE addition and in digesters operating at 42 °C. No synergistic effect on digester performance or microbial community structure was observed on combining increased temperature with TE addition. CONCLUSIONS Our identification of prominent populations related to enhanced performance within methanogenic (high dominance and richness of M. bourgensis) and acetogenic communities are valuable for continued research and engineering to improve methane production in high-ammonia conditions. We also show that a temperature increase of only 5 °C within the mesophilic range results in an extreme dominance of one or a few species within these communities, independent of TE addition. Furthermore, functional stable operation was possible despite low microbial temporal dynamics, evenness and richness at the higher temperature.
منابع مشابه
Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation
With the increasing demand for renewable energy and sustainable waste treatment, biogas production is expanding. Approximately four billion litres of bio-ethanol are produced annually for vehicle fuel in Europe, resulting in the production of large amounts of stillage residues. This stillage is energy-rich and can be used for biogas production, but is a challenging substrate due to its high lev...
متن کاملA pilot-scale comparison of mesophilic and thermophilic digestion of source segregated domestic food waste.
Source segregated food waste was collected from domestic properties and its composition determined together with the average weight produced per household, which was 2.91 kg per week. The waste was fed over a trial period lasting 58 weeks to an identical pair of 1.5 m(3) anaerobic digesters, one at a mesophilic (36.5 degrees C) and the other at a thermophilic temperature (56 degrees C). The dig...
متن کاملEffect of Total Solid Content to Biogas Production Rate from Vinasse (RESEARCH NOTE)
Vinasse that has high COD and total solid content is bottom of distillation from unit of bioethanol production Vinasse treatment using anaerobic digestion produced biogas. This research used anaerobic digester-laboratory scale at room temperature and batch system. The purpose of this research was investigation the effect of total solid content to biogas production rate from vinasse, pH profil a...
متن کاملAmmonia removal in food waste anaerobic digestion using a side-stream stripping process.
Three 35-L anaerobic digesters fed on source segregated food waste were coupled to side-stream ammonia stripping columns and operated semi-continuously over 300 days, with results in terms of performance and stability compared to those of a control digester without stripping. Biogas was used as the stripping medium, and the columns were operated under different conditions of temperature (55, 70...
متن کاملEffect of Thermal Hydrolysis on Anaerobic Digester Performance
Anaerobic digestion (AD) has been recently introduced as a promising technology for producing bioenergy around the world. Due to its especial characteristics, solid waste could be considered as a proper feedstock in the digester. Retention time (RT) and rate of biogas production are two major parameters affecting the efficiency of the process. The AD procedure of biogas production consists of h...
متن کامل